

Data-On-Demand ListBox

Created by Kem Tekinay, MacTechnologies Consulting.
©2013 by MacTechnologies Consulting

This manual was written by Kem Tekinay, MacTechnologies Consulting and is ©2013 by
MacTechnologies Consulting. This is version 2.4.2 of the manual.

Data-On-Demand ListBox

Table of Contents
General Description ... 3	

About This Manual .. 3	

System Requirements .. 3	

Memory Usage ... 3	

The Concept .. 3	

Installation and Usage .. 4	

If You Read Nothing Else… ... 5	

Sorting ... 6	

Some Key Differences ... 7	

Details .. 9	

Properties .. 9	

Events .. 15	

Methods .. 20	

Version History .. 25	

Contact .. 28	

Legal Stuff ... 28	

Data-On-Demand ListBox

– 3 –

General Description
The Data-On-Demand ListBox is a subclass of the native REALbasic ListBox and, as far as the end-user
is concerned, will behave in the same way. The key difference for the programmer is that the Data-On-
Demand ListBox does not store any data. Rather, it is a “virtual” ListBox that relies on you, the
programmer, to provide data, row-by-row, as requested. As a result, the Data-On-Demand ListBox is
much faster at populating thousands of rows and, because you maintain the data, does not require you
to coordinate changes from the data in your database to the ListBox.

About This Manual
This manual is written for the experienced REALbasic developer and assumes that you are familiar
with the standard ListBox control.

You will find that I am repeatedly repetitive in a repetitious way. This is done intentionally because I
find that nothing wastes more time than trying to find that description of widgets that I knew I read in
a manual, only to eventually find it the section entitled “Houseplants.” By repeating information in all
the relevant sections, I hope to make finding it easier later on.

System Requirements
The Data-On-Demand ListBox requires REALbasic 2006r3 or later and should work on any platform. It
was developed and tested extensively on the Mac using OS X 10.3.7 and later, and tested for
compatibility on Windows using XP Service Pack 1. The Linux version was unavailable for testing so
feedback would be appreciated.

Memory Usage
The Data-On-Demand ListBox was designed with speed, not memory usage, in mind. If your RAM
requirements are tight, you might want to look elsewhere.

The Data-On-Demand ListBox uses 1 byte per row of data plus approximately 1 kilobyte. If you let the
Data-On-Demand ListBox handle sorts, the RAM requirement increase to 13 bytes per row, and, during
the sort, will increase by the combined number of characters in your sort strings plus some overhead.

For example, if your data has 1,000 rows, the basic memory requirement will be 2 K (1,000 rows X 1
byte each + 1 K). If the Data-On-Demand ListBox handles sorting, each row will require 13 K, bringing
the basic RAM requirement to 14 K (1,000 rows X 13 bytes each + 1 K). Furthermore, if each row uses a
10 byte sort string, the memory usage will increase by 10 K (1,000 rows X 10 bytes each) + overhead,
bringing the total memory usage to 24K + overhead during the sort. After the sort, the memory
requirement will drop back down to 14 K, not 2 K, until the next Reset.

Note that these values reflect the arrays and variables used by the subclass. REALbasic may use
additional RAM in its internal implementation of the ListBox so these figures should be considered
estimates only.

The Concept
The standard REALbasic ListBox works by storing the values of each cell internally. It is up to you to
coordinate the display with your database and this is usually done by storing hidden data in each row
to identify the proper record in your database. Each row is accessed by its zero-based index.

Data-On-Demand ListBox

– 4 –

The Data-On-Demand ListBox does not store any data; rather, it relies on you to provide the data for
each row as requested. This request only comes when the data is refreshed, either as a result of a Reset
(see “Methods” below), a scroll, or RefreshData (see “Methods” below), and takes place in the
RequestRowData event (see “Events” below).

In order to make this interaction as seamless as possible, the Data-On-Demand ListBox implements
three ways of addressing each row:

VisibleRow: This is the index of a row that is actually visible to the end user at the moment. For
example, your data may have 1,000 rows, but only 10 are visible at any given time due to the physical
size of the ListBox. These VisibleRows are numbered 0 through 9. Setting information in a VisibleRow
directly is discouraged; rather, data should be set in the RequestRowData event (see “Events” below).
ListCount will return the number of currently visible rows, although its use is discouraged. Use
ListCountDOD instead to get the number of VirtualRows currently being handled (see “Properties”
below). As the Data-On-Demand ListBox is resized, the number of VisibleRows will change.

VirtualRow: This is the index of each row of data that the Data-On-Demand ListBox is currently
handling and corresponds to the number of items in your database. For example, if your data has 1,000
rows, the first VirtualRow will have the index 0 and the last will have the index 999. The index of the
every VirtualRow and DataRow (see below) will be the same until the Data-On-Demand ListBox sorts
the data. The VirtualRow is only used directly by the ScrollPosition property (see “Properties” below).
Setting data in a VirtualRow directly when the VirtualRow is not currently visible will not result in an
error, but is ultimately meaningless. Retrieving information from a VirtualRow that is not visible will
result in a runtime error.

DataRow: This is the index of each row that corresponds to an index in your database. For example,
suppose your database has 1,000 records. If the Data-On-Demand ListBox sorts the data, the data from
your first record may appear on the tenth row. This tenth row will have the VirtualRow index of 9, but
a DataRow index of 0 (keeping in mind that all indexes are zero-based). Almost all interaction with the
Data-On-Demand ListBox will take place using the DataRow so you do not have to keep track of where
your data ends up after a sort. Setting data in a DataRow directly when the DataRow is not currently
visible will not result in an error, but is ultimately meaningless. Retrieving information from a
DataRow that is not visible will result in a runtime error.

The Data-On-Demand ListBox provides the tools to convert between the different types of indexes (see
“Methods” below). Only ScrollPosition (and, by extension, the optional parameter in Reset) takes and
returns the VirtualRow while all other interaction uses the DataRow. For example, the
RequestRowData event asks for the information in a DataRow and you can use properties like Cell,
CellCheck, CellBold, etc., to set the information in that DataRow without regard to which VirtualRow
that DataRow actually appears.

Installation and Usage
This section provides a basic description of how to install and use the Data-On-Demand ListBox. For a
more options and complete descriptions of the methods and events mentioned, see the sections entitled
“Methods,” “Events” and “Properties.”

To install the Data-On-Demand ListBox, drag the file named “LB_DataOnDemand” into your project.
Make sure that its Super class is to set to “ListBox”.

Create a new ListBox in a window and set it’s Super class to “LB_DataOnDemand”. You should also
assign a name. For the purposes of this section, we’ll use “lbDOD.”

Unregistered copies can be evaluated in the REALbasic IDE and during debugging, but will not allow
you to compile a standalone application. If you have a registration code, supply it in the
RequestRegistrationInfo event by setting the regName and regNumber variables.

Data-On-Demand ListBox

– 5 –

If you want a vertical scrollbar, add that to the window and line it up with the ListBox. Because of the
nature of the Data-On-Demand ListBox, you cannot use the ListBox’s own vertical scrollbar.
Attempting to do so will result in an error.

In the scrollbar’s ValueChanged event, insert the code “lbDOD.ScrollPosition = me.value”.

In the ListBox’s Open event, set the variable myScrollBar to the scrollbar. The Data-On-Demand ListBox
will maintain the scrollbar for you.

In the ListBox’s RequestRowData events, insert code to fill in or clear the cells of a single row. You can
use all the traditional methods and properties (Cell, CellBold, CellCheck, etc.) to set this information.
Note: Because the Data-On-Demand ListBox reuses rows for speed, it is up to you to clear cells that are
supposed to be blank. The Data-On-Demand ListBox will not do it for you.

If you would like the Data-On-Demand ListBox to handle sorting for you, place code in the
RequestSortData event to return the appropriate sort string for each row. Note: The string
comparisons are case-sensitive. If the sort should be case-insensitive, return all strings in upper or
lowercase. Also, sorting will slow down dramatically when the sort string is the same for many rows.
Try to differentiate where possible (see the section on “Sorting” below).

Use the Reset method to tell the Data-On-Demand ListBox how many records it will be displaying.
You can optionally provide the scrollToRow integer value, doNotSort boolean value, and initialSelection
integer array. scrollToRow will set the initial ScrollPosition after the Reset. doNotSort will prevent Reset
from attempting to sort the data, thus preventing a loop if you handle your own sorting. initialSelection
will highlight the given DataRows immediately. The call to Reset can occur in the Open event, or
anywhere else after the Open event fires.

If the number of records in your database changes, for example, because of a query by the user, call
Reset again with the new number of rows to display. By using the optional parameters, you can put
Reset into a tight loop that keeps adding rows to the Data-On-Demand ListBox.

If you make a change to the data in your database, but the number of records has not changed, call
RefreshData. You can use the optional recalcNumOfVisibleRows parameter to force the Data-On-
Demand ListBox to add or remove visible rows from the display. This is sometime necessary when
resizing the window.

If You Read Nothing Else…
The Data-On-Demand ListBox is designed to behave like the standard REALbasic ListBox and will
even use the same properties and methods where possible. In this section, I will outline the basic
differences between the two and the basic usage of the Data-On-Demand ListBox. I have tried to order
these points in a sensible way, but you should read this whole section.

• The Data-On-Demand ListBox does not store any data; rather, it relies on you, the programmer, to
maintain a database and supply the data to each row as requested. The request comes in the
RequestRowData event. If required, you can use the BeforeRefresh event to set up data before the
data is requested.

• It is up to you to clear blank cells. The Data-On-Demand ListBox reuses rows to enhance speed so it
will not do this for you. Failure to clear blank cells will result in cells that appear to repeat data in
an almost random fashion. You can use the AssignToCells method to assign data to multiple
columns at once.

• Data is requested in alternating directions. That is, the Data-On-Demand ListBox will request row
data from lowest DataRow to highest DataRow on the first pass, from highest to lowest on the

Data-On-Demand ListBox

– 6 –

second pass, lowest to highest on the third pass, etc. You can override this behavior by setting the
ForwardRequestsOnly property to “true,” forcing the Data-On-Demand ListBox to only request data
from lowest DataRow to highest DataRow.

• Using a scrollbar is optional, but you cannot use the ListBox’s own scrollbar. Rather, create an
independent scrollbar and tell the Data-On-Demand ListBox about it in the Open event by setting
the myScrollBar variable. Using the ListBox’s horizontal scrollbar is not prohibited.

• When editing a cell, the scrollbar is disabled and, in fact, all scrolling is disabled. The user must
click out of the cell to be able to scroll again.

• The Data-On-Demand ListBox uses the row height for a number of internal calculations. Therefore,
the DefaultRowHeight property must be set to a positive number. Resetting it to a negative number
will generate an error, or cause unpredictable results.

• Do not allow the Data-On-Demand ListBox to get resize to smaller than what is needed to display
one row. If you do, your program will crash. Set the window’s MinHeight and MinWidth properties
accordingly.

• The native properties of ListCount, SelCount and ListIndex will return values that pertain to the
visible rows only, and are therefore meaningless in this environment. Use ListCountDOD,
SelCountDOD and ListIndexDOD instead.

• The Data-On-Demand ListBox will handle sorting for you (see the section on “Sorting” below), but
will slow down dramatically if much of your sort data is uniform. Try to differentiate where you
can.

• If you don’t want the Data-On-Demand ListBox to handle sorting for you, return “true” in the
SortColumn event, just like in the standard ListBox. You should also set the optional doNotSort
parameter to “true” in the Reset method.

• The column parameter in the SortColumn event might be -1, indicating “unsort.” Be prepared for
that.

• You can use the InitialValue property to set the header information, but don’t try to include any
additional row data. It will be wiped when the ListBox is reset.

• Some database implementations, like SQLite3 from SQLabs, will let you return control to the user
almost immediately after a SQL statement and allow you to add rows to the Data-On-Demand
ListBox over time. This kind of a loop should be placed in a timer that periodically queries the
database engine for additional information and calls Reset with all its parameters. Take a look at
the SQLite3 Example project that comes with Data-On-Demand ListBox for an example of this.

Sorting
The Data-On-Demand ListBox will handle sorting for you when a header is clicked. By its nature, the
Data-On-Demand ListBox does not store any information internally so it must ask you for data about
each row before the sort begins. The request comes in the RequestSortData event where you should set
the result variable with the string that should be used for comparison.

This method differs from the standard ListBox behavior in that there is no CompareRows event. The
reasoning is that, while CompareRows may ask information about a single row repeatedly,
RequestRowData will only ask about each row once. However, this does not mean that you cannot
control the sort order. For example, if you are sorting on a column of checkboxes, you can set the result

Data-On-Demand ListBox

– 7 –

variable to “a” where the box is checked and “z” where the box is unchecked. This will ensure that the
checked boxes will come to the top during an ascending sort of that column.

The Data-On-Demand ListBox uses a case-sensitive sort by default. To ignore case, convert the sort
string to upper- or lowercase before placing it into the result variable. As an alternative, you can use a
potentially faster, case-insensitive algorithm by setting the UseAltCaseInsensitiveSort property to “true”.

The Data-On-Demand ListBox uses optimized algorithms for very fast sorts. However, it will slow
down dramatically when the data is mostly uniform. To ensure this does not happen, you should
consider combining the data from multiple columns to provide unique strings. Even appending a
number like the DataRow index will do the trick.

Since you maintain the database that the Data-On-Demand ListBox uses to display rows, the sort is
only as fast as the access to your database. If your database has its own sort algorithm, it might be
faster to use that than to rely on the Data-On-Demand ListBox. In that case, sort your data in the
SortColumn event, then return “true” to keep the Data-On-Demand ListBox from sorting your data.
Remember that the column parameter of the SortColumn event could be -1. This will happen if the shift
key is held down while clicking a heading and indicates “unsort.” Your code should be prepared for
that.

Also, it might be faster to cache your data at the outset. If so, you can do that in SortColumn event too.
If you need to perform clean up after the sort, use the AfterSortColumn event.

If case-insensitive sorts are acceptable, you will find that setting the UseAltCaseInsensitiveSort property
to “true” could speed sorts dramatically on some platforms.

Some Key Differences
There are some key differences between the Data-On-Demand ListBox and the standard REALbasic
ListBox other than the basic concept of filling in information as it is needed rather than loading it at
once initially. These are all documented below in the appropriate sections.

• Use Reset to tell the Data-On-Demand ListBox how many rows it will be maintaining. The optional
parameters of scrollToRow, doNotSort and initialSelection can be used if rows are being “added” in a
tight loop.

• Aside from mimicking the standard behavior of the Selected property, you can get or set the current
selection as an array of DataRows using the Selected() method. This is much faster than changing
the Selected state of every row individually in a loop. Normally, setting this array would scroll the
Data-On-Demand ListBox so that the first selected row would come into view, but you can avoid
that by setting the optional doNotScroll parameter to “true”.

• The Data-On-Demand ListBox has a SelectAll method for fast selection of every row. You can also
select a range of DataRows easily by using the SelectedRange method, and deselect all rows by
setting the ListIndexDOD property to “-1”.

• The CellHasFocus property will tell you whether a user is currently editing a cell. While editing, all
ability to scroll the Data-On-Demand ListBox is automatically disabled.

• Because the Data-On-Demand ListBox is a virtual ListBox, the standard properties of ListIndex,
ListCount and SelCount have no meaning. Instead, use ListIndexDOD, ListCountDOD and
SelCountDOD.

• Unlike most of the other properties of the Data-On-Demand ListBox, ScrollPosition deals in
VirtualRows, not DataRows. If you allow the Data-On-Demand ListBox to handle sorting for you,

Data-On-Demand ListBox

– 8 –

these indexes will be different. To be sure to scroll to a particular DataRow wherever it might
appear within the ListBox, use the ScrollPositionDataRow property instead.

• As of REALBasic 2005, the ListBox will generate a CellBackgroundPaint event for every row
whether it has content of not. The Data-On-Demand ListBox allows you turn off the behavior by
setting the UseBlankCellBkgdPaint property to “false”. If you do turn it on, you can use the
additional isBlankRow parameter in the CellBackgroundPaint event to see if the current row has
content or not. If it doesn’t, the dataRow parameter will actually contain the index of the blank,
visible row.

• You can check the version of the Data-On-Demand ListBox using the Version property. The About
method will show a dialog with a brief description of the Data-On-Demand ListBox.

• Because the Data-On-Demand ListBox is a virtual ListBox, the number of row is maintains is
different than the number of rows the user can actually see at one time. To find out how many rows
are currently visible, use the VisibleRowCount property.

• The Data-On-Demand ListBox offers a couple of additional events to give you finer control than
offered by the standard ListBox. These are AfterSortColumn (fired after a sort is completed if the
Data-On-Demand ListBox had handled the sort) and BeforeRefresh (fired just before the visible
rows are refreshed so you can prepare your data). There is also the additional parameter of
isBlankRow in the CellBackgroundPaint event that will allow you to determine of the row you are
about to draw actually has any data in it.

• The Data-On-Demand ListBox provides a number of methods over the standard ListBox to make
coding easier. Aside from the ability to translate between DataRow, VirtualRow and VisibleRow
(DataRowToVirtualRow, DataRowToVisibleRow, VirtualRowToDataRow,
VirtualRowToVisibleRow, VisibleRowToDataRow, and VisibleRowToVirtualRow), you can
also translate a set of coordinates to the header, column or row they fall within
(CoordinatesToHeader, CoordindatesToDataRow, CoordinatesToVirtualRow,
CoordinatesToVisibleRow, and CoordinatesToColumn).

• The Data-On-Demand ListBox includes optimized algorothms that are significantly faster than the
standard ListBox. Unlike other sorting implementations that slow down dramatically if the data is
already mostly sorted, this does not. Just keep your sort strings unique, and you will enjoy
dramatic sorting speeds, even on hundreds of thousands of rows. Note, however, that it is often
better to let your database engine to perform its own sorting if that is an option.

• The Data-On-Demand ListBox has two methods of sorting columns: A case-sensitive mode
(default) and a potentially faster, case-insensitive mode. These are controlled by the
UseAltCaseInsensitiveSort property and you should consider setting it to “true” if case-insensitive
sorts are acceptable.

Data-On-Demand ListBox

– 9 –

Details
The following tables review the individual properties, events and methods of the Data-On-Demand
ListBox. Some are native and unchanged from the standard ListBox and are listed here as a
convenience; these are listed in black. Some are overridden to take new or different parameters; these
are listed in blue. Some are new to the Data-On-Demand ListBox and provide additional functionality;
these are listed in green. And some are native to the ListBox but should not be used because they will
result in an error, are unsupported, or are just meaningless within the Data-On-Demand ListBox; these
are listed in red.

Where an item exists in the standard ListBox, you should refer to the REALbasic documentation or
online help for a description and additional information.

Properties
The following are a list of properties of the Data-On-Demand ListBox. Note that almost all properties
use the DataRow index, which is the index of a record within your database (see “The Concept” above).
Setting the property of a cell that is not currently visible is meaningless, but will not result in an error.
Getting the property of a cell that is not currently visible will result in a runtime error.

Some standard ListBox properties are listed in black and are not modified in any way. In those cases,
you are directed to consult the REALbasic documentation and online help for a description.

As in the REALbasic documentation, properties that are in bold type are read-only.

Name Type Description
ActiveCell Returns the EditField of the currently active

cell. See the REALbasic documentation.
Bold Boolean Sets the style of the entire ListBox to bold. See

the REALbasic documentation.
CellAlignment Integer Parameters are dataRow, column (integers).

Used to set or get the alignment of a cell. Best
used in the RequestRowData event.
Otherwise, setting the CellAlignment of a cell
that is not currently visible will not result in an
error, but is ultimately meaningless. Getting
the CellAlignment of a cell that is not currently
visible will result in a runtime error. See the
REALbasic documentation for a list of the
acceptable values.

CellAlignmentOffset Integer Parameters are dataRow, column (integers).
Used to set or get the alignment offset in pixels
of a cell. Best used in the RequestRowData
event. Otherwise, setting the
CellAlignmentOffset of a cell that is not
currently visible will not result in an error, but
is ultimately meaningless. Getting the
CellAlignmentOffset of a cell that is not
currently visible will result in a runtime error.

CellBorderBottom
CellBorderLeft
CellBorderRight
CellBorderTop

Integer Parameters are dataRow, column (integers).
Sets the border of a cell. See the REALbasic
documentation for more details and a list of
acceptable values.

Data-On-Demand ListBox

– 10 –

Name Type Description
CellCheck Boolean Parameters are dataRow, column (integers).

Sets the checked state of an individual cell. See
the REALbasic documentation for a list of
acceptable values.

CellHasFocus Boolean Returns whether the user is currently editing a
cell.

CellTag Variant Parameters are dataRow, column (integers).
Gets or sets the CellTag information for the
specified DataRow as long as that DataRow is
currently visible. Getting or setting the CellTag
of a row that is not currently visible will result
in a runtime error. The user is responsible for
clearing the CellTag or risk accessing stale
data.

CellType Integer Parameters are dataRow, column (integers).
Gets or sets the type of a cell. See the
REALbasic documentation for a list of
acceptable values.

Column ListColumn Parameter is columnNumber (integer).
Returns the specified visible column. Will not
result in an error, but this is of limited value
with this type of ListBox. Usage of this
property is discouraged.

ColumnAlignment Integer Parameter is columnNumber (integer). See the
REALbasic documentation.

ColumnAlignmentOffset Integer Parameter is columnNumber (integer). See the
REALbasic documentation.

ColumnCount Integer Returns the number of columns the ListBox
contains. See the REALbasic documentation.

ColumnSortDirection Integer Parameter is columnNumber (integer). Sets
the sort direction for each column. See the
REALbasic documentation.

ColumnType Integer Parameter is columnNumber (integer). Sets
the type of each column. See the REALbasic
documentation.

ColumnWidths String Gets or sets the widths of each column as a
comma-separated list of values. See the
REALbasic documentation.

DataField String Will not generate a runtime error, but is not
useful with this type of ListBox.

DataRowIsVisible Boolean Parameter is dataRow (integer). Returns
whether the dataRow is currently visible to the
user.

DataSource DataControl Will not generate a runtime error, but is not
useful with this type of ListBox.

DefaultRowHeight Integer Determines the height of every row. This must
be set to a positive number. Using a negative
number will result in an error, or will cause
unpredictable results. The Data-On-Demand
ListBox will set this to a positive number
initially based on the font size.

EnableDrag Boolean Set to “true” to allow rows to be dragged. See
the REALbasic documentation.

Data-On-Demand ListBox

– 11 –

Name Type Description
EnableDragReorder Boolean Will not generate a runtime error, but is not

useful with this type of ListBox.
Expanded Integer Will not generate a runtime error, but is not

useful with this type of ListBox. Hierarchical
data has not been tested.

ForwardRequestsOnly Boolean When “false” (default), the Data-On-Demand
ListBox will request DataRows from lowest to
highest, then highest to lowest, then lowest to
highest, etc., during the RequestRowData
event. When “true,” the Data-On-Demand
ListBox will only request DataRows from
lowest to highest during the RequestRowData
event..

GridLinesHorizontal Integer See the REALbasic documentation.
GridLinesVertical Integer See the REALbasic documentation.
HasFocus Boolean Returns whether the Data-On-Demand

ListBox currently has focus.
HasHeading Boolean Gets or sets whether the headers are visible.

See the REALbasic documentation.
Heading String array Gets or sets the strings for the headings. See

the REALbasic documentation.
HeadingIndex Integer Gets or sets the current sort column. Using the

ColumnSortDirection property is preferred,
although you may have to set this property
too. See the REALbasic documentation.

Hierarchical Boolean Will not generate a runtime error, but is not
useful with this type of ListBox. Hierarchical
data has not been tested.

InitialValue String Sets the initial value of the ListBox. Should
only be used to set the initial headers. All
other data should be set in the
RequestRowData event.

Italic Boolean Sets the style of the entire ListBox to italic. See
the REALbasic documentation.

LastIndex Unsupported Because the Data-On-Demand ListBox
requests data as it needs it, this property is
meaningless in this environment. Using this
property will result in a runtime error. Use the
RequestRowData event to provide data and
the RefreshData method to update the display
using your database.

List String Parameter is dataRow (integer). Gets or sets
the cell content for column 0 of the DataRow.
Setting a cell that is not visible will not
generate an error but is ultimately
meaningless. Getting a cell that is not visible
will result in a runtime error. This is the same
as using Cell(dataRow, 0).

Data-On-Demand ListBox

– 12 –

Name Type Description
ListCount Integer Returns the number of visible rows. Using this

property will not result in an error, but is not
useful here. Use ListCountDOD instead to get
the number of VirtualRows. If you really must
know the number of VisibleRows rather than
VirtualRows, use the VisibleRowCount
property instead.

ListCountDOD Integer Returns the number of rows that are currently
being handled by the Data-On-Demand
ListBox. Equivalent to using ListCount in a
standard ListBox.

ListIndex Integer Gets or sets the first selected visible row.
Using this property will not result in an error,
but is not useful here. Use ListIndexDOD
instead.

ListIndexDOD Integer Gets or sets the first selected DataRow.
Equivalent to using ListIndex in a standard
ListBox except the result is the index in your
database. If the Data-On-Demand ListBox has
not sorted your data, the DataRow and
VirtualRow will be identical. Otherwise, you
can convert this index to the VirtualRow index
using the DataRowToVirtualRow method.
Setting this property will scroll to the selected
row if it isn’t currently visible, unless the
optional doNotScroll parameter is set to “true”.

ScrollBarHorizontal Boolean Set to “true” to add a horizontal scrollbar to
the ListBox. See the REALbasic
documentation.

ScrollBarVertical Boolean Must be set to “false.” The Data-On-Demand
ListBox cannot use the standard scrollbar. You
should add a separate scrollbar and link it to
the Data-On-Demand ListBox in the Open
event.

ScrollPosition Integer Gets or sets the first visible VirtualRow. If the
Data-On-Demand ListBox has not sorted your
data, the VirtualRow and DataRow will be
identical.

ScrollPositionDataRow Integer Gets or sets the first visible DataRow. If the
Data-On-Demand ListBox has not sorted your
data, the DataRow and VirtualRow will be
identical.

ScrollPositionX Integer Gets or sets the horizontal scroll position. See
the REALbasic documentation.

SelCount Integer Gets the number of visible selected rows.
Using this property will not result in an error,
but is not useful here. Use SelCountDOD
instead.

SelCountDOD Integer Gets the number of currently selected rows.
Equivalent to using the SelCount property in a
standard ListBox.

Data-On-Demand ListBox

– 13 –

Name Type Description
Selected Boolean Parameter is dataRow (integer). Gets or sets

the selected state of a given DataRow. If the
dataRow is a negative number or outside the
range of all DateRows, returns “false.”

Selected Integer array Gets all the currently selected DataRows as an
integer array, or sets the current selection to
the DataRows in the integer array. Setting the
selection will change the ScrollPosition to the
first selected VirtualRow unless the optional
doNotScroll parameter is set to “true”. When
setting the selection, if one of the indexes in
the array is invalid, it will be ignored. Also see
the SelectedRange method.

SelectionType Integer Indicates the type of selection allowed. Use 0
for single selection, 1 for multiple selection.
See the REALbasic documentation.

SortedColumn Integer Gets or sets the current sort column, but does
not initiate a sort. See the REALbasic
documentation.

Text String See the REALbasic documentation.
TextFont String See the REALbasic documentation.
TextSize Integer See the REALbasic documentation.
Underline Boolean Sets the style of the entire ListBox to

underline. See the REALbasic documentation.
UseBlankCellBkgdPaint Boolean When “false” (default), the

CellBackgroundPaint event will only fire for
visible rows that contain data. When “true”,
the CellBackgroundPaint event will also fire
for rows that contain no data. This is useful,
for example, for creating alternate row
shading throughout the ListBox. If a row has
no data, the dataRow parameter of the
CellBackgroundPaint event will be the index
of the visible row and its isBlankRow
parameter will be “true.” [Available only in
REALbasic 2005 or later; no effect in previous
versions.]

UseAltCaseInsensitiveSort Boolean When “false” (default), the Data-On-Demand
ListBox will use a fast, case-sensitive
QuickSort algorithm to sort columns. When
“true”, it will use a potentially faster, case-
insensitive version. (Speed will vary by
platform.)

UseFocusRing Boolean See the REALbasic documentation.
Version Double Returns the version of the Data-On-Demand

ListBox.
VirtualRowIsVisible Boolean Parameter is virtualRow (integer). Returns

whether the virtualRow is currently visible to
the user.

VisibleRowCount Integer Returns the number of rows that are currently
visible. Use this instead of the ListCount
property if you really must know the number
of visible rows. Use the ListCountDOD
property to get the number of virtual rows.

Data-On-Demand ListBox

– 14 –

Name Type Description
VisibleRowRoundingPref Integer Sets the preference for calculating visible rows.

Can be set from the editor to “Round Down” (-
1, default), “Round” (0) or “Round Up” (1).
This can also be set at runtime using the
constants kRoundDownVisibleRows,
kRoundVisibleRows, and kRoundUpVisibleRows.
You should call Reset right after setting this
property at runtime. Changing this setting will
determine how conservative or liberal the
Data-On-Demand ListBox will be in creating
visible rows based on the size of the ListBox.
Round Down will create more white space at
the bottom of the list while Round Up will
allow the last item to scroll off the end. It is up
to you to constrain the size of the list so that
the last item will be visible when the user
scrolls to the bottom.

Data-On-Demand ListBox

– 15 –

Events
The following are a list of events of the Data-On-Demand ListBox. Note that many events use the
DataRow index, which is the index of a record within your database (see “The Concept” above). Setting
the property of a cell that is not currently visible is meaningless, but will not result in an error. Getting
the property of a cell that is not currently visible will result in a runtime error.

Some standard ListBox properties are listed in black and are not modified in any way. In those cases,
you are directed to consult the REALbasic documentation and online help for a description.

As in the standard REALbasic events, some events will return a Boolean. In those cases, return “true”
to override the default Data-On-Demand ListBox behavior.

Name Parameters Description
AfterSortColumn column as Integer Triggered after an internal sort has taken

place. Only occurs if the SortColumn event
returns “false” and should be used to perform
any post-sort cleanup. If the SortColumn
event returns “true” (meaning you’ve sorted
your own data rather than letting Data-On-
Demand ListBox do it), cleanup can be done in
the SortColumn event itself.

BeforeRefresh The data is about to refresh and the series of
RequestRowData events are about to occur.
Use this event to set up any data you need for
the upcoming data refresh.

CellAction dataRow as Integer,
column as Integer

Triggered after an editable cell is edited
whether the contents have changed or not. See
the REALbasic documentation for more
details.

CellBackgroundPaint g as Graphics, dataRow
as Integer, column as
Integer, isBlankRow as
Boolean

Returns Boolean. Allows you to handle the
background drawing of a cell. For example
you can use this event to create an alternating
display pattern when the ListBox is displayed.
You can convert the DataRow to VirtualRow
with the DataRowToVirtualRow method to
see where this DataRow falls within the
ListBox. Return “true” if you don’t want
REALbasic to help paint the background. In
REALbasic 2005 or later, you can set the
UseBlankBkgdPaint property to tell the Data-
On-Demand ListBox to fire this event even for
rows that contain no data. In that case, the
dataRow parameter will actually contain the
index of the visible row and the isBlankRow
parameter will be “true.” The
UseBlankCellBkgdPaint property is initially
“false” for the sake of compatibility. See the
REALbasic documentation for more details.

CellClick dataRow as Integer,
column as Integer, x as
Integer, y as Integer

Returns Boolean. Triggered when the end user
clicks on a cell. Return “true” to override the
default REALbasic behavior. See the
REALbasic documentation for more details.

Data-On-Demand ListBox

– 16 –

Name Parameters Description
CellGotFocus dataRow as Integer,

column as Integer
Triggered when the user has clicked on an
editable cell. You can use the CellHasFocus
property to see if a cell currently has focus. See
the REALbasic documentation for more
details.

CellKeyDown dataRow as Integer,
column as Integer, key
as String

Returns Boolean. Triggered after the user has
pressed a key in an editable cell. Return “true”
to keep REALbasic from processing the key.
See the REALbasic documentation for more
details.

CellLostFocus dataRow as Integer,
column as Integer

Triggered after the user has left an editable
cell, either by clicking or pressing tab or
return. You can use the CellHasFocus property
to see if a cell currently has focus. See the
REALbasic documentation for more details.

CellTextChange dataRow as Integer,
column as Integer

Triggered after the text of an editable cell has
changed as long as the preceding
CellKeyDown event has returned “false.” See
the REALbasic documentation for more
details.

CellTextPaint g as Graphics, x as
Integer, y as Integer,
dataRow as Integer,
column as Integer

Returns Boolean. Allows you to handle the
text painting of a cell. See the REALbasic
documentation for more details.

Change The selected item has changed. You can use
the Selected methods and SelCountDOD and
ListIndexDOD properties to get the currently
selected DataRows. See the REALbasic
documentation for more details.

CollapseRow dataRow as Integer The user has clicked on the disclosure triangle
of an expanded DataRow. Note that
hierarchical items have not been tested and are
unsupported.

CompareRows Unsupported This event does not occur in the Data-On-
Demand ListBox. Use the RequestSortData
event instead.

DoubleClick x As Integer, y As
Integer

The user has double-clicked on an item. X and
y are the coordinates where the double-click
occurred.

DragReorderRows Unsupported
DragRow drag as DragItem,

dataRow as Integer
Returns Boolean. The user is dragging a
DataRow. Return “true” to allow the drag to
occur. See the REALbasic documentation for
more details.

DropObject obj as DragItem Some object has been dropped onto the
ListBox. See the REALbasic documentation for
more details.

EnableMenuItemsToo This is the same as the EnableMenuItems
event. See the REALbasic documentation on
the standard ListBox’s EnableMenuItems
event for more details.

Data-On-Demand ListBox

– 17 –

Name Parameters Description
ExpandRow dataRow as Integer The user has clicked on the disclosure triangle

of a collapsed DataRow. Note that hierarchical
items have not been tested and are
unsupported.

GotFocus The Data-On-Demand ListBox has gotten the
focus. You can also use the HasFocus property
to determine whether the ListBox currently
has focus. See the REALbasic documentation
for more details.

HeaderPressed column as Integer Returns Boolean. Triggered after the user has
clicked on a header. Return “true” to keep the
Data-On-Demand ListBox from handling the
click. See the REALbasic documentation for
more details.

KeyDown key as String Returns Boolean. Triggered after the user has
pressed a key while the Data-On-Demand
ListBox has focus. Return “true” to keep
REALbasic from handling the key. See the
REALbasic documentation for more details.

LostFocus The Data-On-Demand ListBox has lost the
focus. You can also use the HasFocus property
to determine whether the ListBox currently
has focus. See the REALbasic documentation
for more details.

MouseDown x as Integer, y as
Integer

Returns Boolean. Triggered when the user has
clicked within the borders of the Data-On-
Demand ListBox. Return “true” to allow the
MouseUp and MouseDrag events to fire and
to stop the standard processing of the click.
You can use the CoordinatesToDataRow,
CoordinatesToVirtualRow,
CoordinatesoVisibleRow,
CoordinatesToColumn and
CoordinatesToHeader methods to determine
where the coordinates fall within the ListBox.
See the REALbasic documentation for more
details.

MouseDrag x as Integer, y as
Integer

Triggered when the user initiates the drag of a
row or rows. This event will not fire unless
“true” was returned by the preceding
MouseDown event. You can use the
CoordinatesToDataRow,
CoordinatesToVirtualRow,
CoordinatesoVisibleRow,
CoordinatesToColumn and
CoordinatesToHeader methods to determine
where the coordinates fall within the ListBox.
See the REALbasic documentation for more
details.

MouseEnter The mouse has entered the borders of the
Data-On-Demand ListBox. See the REALbasic
documentation for more details.

MouseExit The mouse has left the borders of the Data-On-
Demand ListBox. See the REALbasic
documentation for more details.

Data-On-Demand ListBox

– 18 –

Name Parameters Description
MouseMove x as Integer, y as

Integer
The mouse has moved within the borders of
the Data-On-Demand ListBox. You can use the
CoordinatesToDataRow,
CoordinatesToVirtualRow,
CoordinatesoVisibleRow,
CoordinatesToColumn and
CoordinatesToHeader methods to determine
where the coordinates fall within the ListBox.
See the REALbasic documentation for more
details.

MouseUp x as Integer, y as
Integer

The mouse button was released within the
borders of the Data-On-Demand ListBox. This
event will not fire unless “true” was returned
by the MouseDown event. You can use the
CoordinatesToDataRow,
CoordinatesToVirtualRow,
CoordinatesoVisibleRow,
CoordinatesToColumn and
CoordinatesToHeader methods to determine
where the coordinates fall within the ListBox.
See the REALbasic documentation for more
details.

MouseWheel X as Integer, Y as
Integer, deltaX as
Integer, deltaY as
Integer

Returns Boolean. The scroll wheel was used
within the borders of the Data-On-Demand
ListBox. Return “true” here to keep the Data-
On-Demand ListBox from handling the event.
Otherwise, ScrollPosition will change by deltaY
and ScrollPositionX will change by deltaX if the
horizontal scrollbar is visible. See the
REALbasic documentation for more details.

Open ByRef myScrollBar as
Scrollbar

Triggered when the window that contains
Data-On-Demand ListBox is opened. Set the
myScrollBar parameter to allow the Data-On-
Demand ListBox to maintain the vertical
scrollbar for you. The ListBox will initially be
initialized to display zero rows.

RequestRegistrationInfo ByRef regName as
String, ByRef
regNumber as String

Triggered when the window that contains the
Data-On-Demand ListBox is opened. Set the
regName and regNumber properties with your
registration information. Only registered
copies of the Data-On-Demand ListBox can be
included in compiled applications.

RequestRowData dataRow as Integer Triggered when the display is being refreshed.
Data can be prepared beforehand in the
BeforeRefresh event. Data will be requested
alternately in ascending and descending order
unless the ForwardRequestsOnly property is set
to “true,” in which case it will only be
requested in ascending order.

RequestSortData dataRow as Integer,
column as Integer,
ByRef result as String

Triggered during a sort by the Data-On-
Demand ListBox. Sort data is requested once
per row in ascending order. This event will
only fire if “false” was returned by the
SortColumn event. After a sort, the
AfterSortColumn event will fire.

Data-On-Demand ListBox

– 19 –

Name Parameters Description
SortColumn column as Integer Returns Boolean. Triggered when a sort is

about to occur. Return “true” here to keep the
Data-On-Demand ListBox from sorting the
column. That will also prevent the
AfterSortColumn event from firing. If the
Data-On-Demand ListBox does not sort your
data, the DataRow and VirtualRow indexes
will always be the same. Note that the column
could be -1 for an unsort. Your code should be
prepared to deal with that. The type of sort is
determined by the UseAltCaseInsensitiveSort
property. See the REALbasic documentation
for more details.

Data-On-Demand ListBox

– 20 –

Methods
The following are a list of methods of the Data-On-Demand ListBox. Note that many methods use the
DataRow index, which is the index of a record within your database (see “The Concept” above). Setting
the property of a cell that is not currently visible is meaningless, but will not result in an error. Getting
the property of a cell that is not currently visible will result in a runtime error.

Some standard ListBox methods are listed in black and are not modified in any way. In those cases, you
are directed to consult the REALbasic documentation and online help for a description. Others are
modified to use the DataRow index. You should consult the REALbasic documentation in those cases
too.

Name Parameters Description
About Shows the Data-On-Demand ListBox About

box.
AddFolder Unsupported
AddRow Unsupported Use the RequestRowData event instead.
AssignToCells dataRow as Integer,

[startingColumn as
Integer,] cellData[,
cellData, …]

Assigns data to cells of the DataRow in the
order given. The startingColumn is assumed
to be 0 if not provided.

AssignToCells dataRow as Integer,
startingColumn as Integer,
cellData() as String

Assigns data to cells of the DataRow from
the cellData array in the order given starting
at startingColumn.

Cell dataRow as Integer,
column as Integer

Gets or sets the text of a cell associated with a
DataRow of a column. Best if used within the
RequestRowData event. Setting the text of a
cell that is not visible will not generate an
error, but is ultimately meaningless. Getting
the text of a cell that is not visible will result
in an error.

CellBold dataRow as Integer,
column as Integer

Gets or sets the bold style of a cell associated
with a DataRow of a column. Best if used
within the RequestRowData event. Setting
the bold style of a cell that is not visible will
not generate an error, but is ultimately
meaningless. Getting the bold style of a cell
that is not visible will result in an error.
Assign “true” to bold the cell, “false” to
make it not bold.

CellItalic dataRow as Integer,
column as Integer

Gets or sets the italic style of a cell associated
with a DataRow of a column. Best if used
within the RequestRowData event. Setting
the italic style of a cell that is not visible will
not generate an error, but is ultimately
meaningless. Getting the italic style of a cell
that is not visible will result in an error.
Assign “true” to italicize the cell, “false” to
make it not italic.

Data-On-Demand ListBox

– 21 –

Name Parameters Description
CellUnderline dataRow as Integer,

column as Integer
Gets or sets the underline style of a cell
associated with a DataRow of a column. Best
if used within the RequestRowData event.
Setting the underline style of a cell that is not
visible will not generate an error, but is
ultimately meaningless. Getting the
underline style of a cell that is not visible will
result in an error. Assign “true” to underline
the cell, “false” to make it not underlined.

ColumnValueProvider column as Integer See the REALbasic documentation for more
details.

CoordinatesToColumn x as Integer, y as Integer Converts the coordinates given by x and y to
the corresponding column. If the coordinates
do not fall within the list, it returns -1. If the
coordinates are within the list but fall within
the white space to the right of the last
column, it returns the index of the last
column + 1, i.e., the ColumnCount. It is up to
you to make sure the index is valid before
using it. Also see the CoordinatesToHeader
method.

CoordinatesToDataRow x as Integer, y as Integer Converts the coordinates given by x and y to
the corresponding DataRow. If the
coordinates do not fall within the list, it
returns -1. If the Data-On-Demand ListBox
has not sorted your data, the DataRow and
VirtualRow will be identical. Otherwise, you
can use the DataRowToVirtualRow method
to find the VirtualRow, or simply use the
CoordinatesToVirtualRow method in the
first place.

CoordinatesToHeader x as Integer, y as Integer Converts the coordinates given by x and y to
the corresponding header. If the coordinates
do not fall within the headers, or the headers
are not shown, it returns -1. If the
coordinates are within the headers but fall in
the white space to the right of the last
column, it returns the index of the last
column + 1, i.e., the ColumnCount. It is up to
you to make sure the index is valid before
using it. Also see the CoordinatesToColumn
method.

CoordinatesToVirtualRow x as Integer, y as Integer Converts the coordinates given by x and y to
the corresponding VirtualRow. If the
coordinates do not fall within the list, it
returns -1. If the Data-On-Demand ListBox
has not sorted your data, the VirtualRow and
DataRow will be identical. Otherwise, you
can use the VirtualRowToDataRow method
to find the DataRow, or simply use the
CoordinatesToDataRow method in the first
place..

Data-On-Demand ListBox

– 22 –

Name Parameters Description
CoordinatesToVisibleRow x as Integer, y as Integer Converts the coordinates given by x and y to

the corresponding VisibleRow. If the
coordinates do not fall within the list, it
returns -1.

DataRowToVirtualRow dataRow as Integer Converts the given DataRow to the
corresponding VirtualRow. If the Data-On-
Demand ListBox has not sorted your data,
these numbers will identical.

DataRowToVisibleRow dataRow as Integer Converts the given DataRow to the
corresponding VisibleRow. If the DataRow is
not currently visible, it returns -1.

DeleteAllRows An alias for Reset(0).
EditCell dataRow as Integer,

column as Integer
Scrolls the cell associated with the DataRow
and column into view, if necessary, and
temporarily makes the cell editable. Sets the
focus to that cell.

InsertFolder Unsupported
InsertRow Unsupported Use the Reset method instead.
InvalidateCell dataRow as Integer,

column as Integer
Redraws the cell associated with a DataRow
and column from scratch. See the REALbasic
documentation for more details. While this
method will work much like the native
implementation, you should consider using
the RefreshData method instead.

PressHeader column as Integer Presses the header of the specified column.
See the REALbasic documentation for
details.

RefreshData [recalcNumOfVisibleRows
as Boolean = false]

Causes all of the visible rows to be refreshed.
Will trigger the BeforeRefresh and
RequestRowData events. The optional
recalcNumOfVisibleRows parameter will force
a recalculation the number of visible rows
before refreshing them. This is usually not
needed except in cases where resizing the
Data-On-Demand ListBox fails to update the
display properly.

RemoveRow Unsupported Use the Reset method instead.

Data-On-Demand ListBox

– 23 –

Name Parameters Description
Reset rows as Integer[,

scrollToRow as Integer =
0, doNotSort as Boolean =
false, initialSelection() as
Integer]

Sets up the Data-On-Demand ListBox to
display a certain number of rows. Use this
method every time the number of rows to
display changes. The optional scrollToRow
parameter allows you to set the initial scroll
position of the ListBox. Setting this to “-1”
will tell the Data-On-Demand ListBox to set
the scroll position based on the initialSelection
parameter and is the same as “0” if there is
no initialSelection. Resetting the Data-On-
Demand ListBox will update the number of
visible and virtual rows and cause all the
data to be refreshed by triggering the
BeforeRefresh and RequestRowData
events. There is no need to call the
RefreshData method immediately after
using Reset. If a header had been pressed
before the reset, the SortColumn event will
be triggered during the reset unless the
optional doNotSort parameter is set to “true”.
The selection will be set to the DataRows
within the optional initialSelection parameter.
By setting scrollToRow and initialSelection
parameter, Reset can be used in a tight loop
that continuously adds rows to the Data-On-
Demand ListBox.

RowPicture dataRow as Integer Gets or sets the picture associated with a
DataRow. Best used from within the
RequestRowData event.

SelectAll Selects every VirtualRow. Put another way, it
sets the Selected property of every row to
“true.” To deselect every row, set the
ListIndexDOD property to -1.

SelectedRange startDataRow as Integer,
endDataRow as Integer

Selects or deselects all the VirtualRows
between startDataRow and endDataRow
inclusive. For example, “SelectedRange(1,
10) = true” would select all the VirtualRows
starting at DataRow 1 and ending with
DataRow 10. If the Data-On-Demand ListBox
has sorted your data, those rows may be
more or less than 10 rows apart. To force a
fixed number of VirtualRows to be affected,
use syntax like this:
“SelectedRange(VirtualRowToDataRow(1),
VirtualRowToDataRow(10)) = true.” This
would cause all VirtualRows between
VirtualRow 1 and VirtualRow 10 to be
selected. Note that if rows outside of the
given range were selected before using this
method, they will still be selected after using
this method. You can set the ListIndexDOD
property to -1 to deselect every row.

Data-On-Demand ListBox

– 24 –

Name Parameters Description
VirtualRowToDataRow virtualRow as Integer Converts the given VirtualRow to the

corresponding DataRow. If the Data-On-
Demand ListBox has not sorted your data,
these numbers will identical.

VirtualRowToVisibleRow virtualRow as Integer Converts the given VirtualRow to the
corresponding VisibleRow. If the VirtualRow
is not visible, it returns -1.

VisibleRowToDataRow visibleRow as Integer Converts the given VisibleRow to the
corresponding DataRow. If the VisibleRow is
outside the range of currently visible rows, it
returns -1.

VisibleRowToVirtualRow visibleRow as Integer Converts the given VisibleRow to the
corresponding VirtualRow. If the VisibleRow
is outside the range of currently visible rows,
it returns -1.

Data-On-Demand ListBox

– 25 –

Version History
2.4.2 CellAction was not firing with a cell of type checkbox.

2.4.1 Fixed visual bug when font size was set to over 16 points.

 Added x, y parameters to DoubleClick event.

 DeleteAllRows is now an alias for Reset(0) and will no longer generate an error.

 Marked methods that are unsupported by Data-On-Demand ListBox as private. This will
generate a compiler error if these methods are used.

 Disabled internal caching for DataRow to VisibleRow conversion.

 Modified My_RecordSet to use the new My_DatabaseField.

2.4 Added AssignToCells method.

 Added code to ensure that the CellAction event will fire in Cocoa if the user quits while editing
a cell.

 Changed registration checking code so it will fire in the debug version too. (This was strictly for
internal debugging and will not impact the user.)

 Added DataRowIsVisible and VirtualRowIsVisible properties.

2.3.2 Added code to compensate for changes in Cocoa.

2.3.1 Updated My_RecordSet module to reflect changes to RecordSet in recent versions of REAL
Studio.

 Changed code to replace deprecated code like NewMemoryBlock.

 Updated examples to replace UI elements like StaticText to new replacements like Label.

 Minor changes to About code.

2.3 Corrected bug that prevented ConstructContextualMenu event from firing.

 Added support for the CellTag property.

 Put in check to make sure that the VisibleRowCount can never be less than 0.

2.2 Corrected bug that prevented mostly uniform data from sorting quickly.

 Added alternate, case-insensitive sort algorithm and UseAltCaseInsensitiveSort property.

 Added an exception when attempting to access a non-visible Cell.

 Implemented control key for non-contiguous selections under Windows and Linux.

2.1 Implemented menu handler for “EditSelectAll” internally.

 Added EditSelectAll menu item to sample projects.

Data-On-Demand ListBox

– 26 –

 Added VisibleRowRoundingPref property.

 Added support for MouseWheel event.

2.01 AS OF THIS VERSION, REALBASIC 2006R3 OR LATER IS REQUIRED.

 Fixed an elusive bug during initialization.

2.0 AS OF THIS VERSION, REALBASIC 2005 OR LATER IS REQUIRED.

 Modified Selected method to set the selection from an array so it is significantly faster.

 Modified Selected method to get the selection as an array so it is significantly faster.

 Modified Reset method so it is significantly faster.

 Added doNotScroll parameter to Selected property when assigning an Integer array.

 Added doNotScroll parameter to ListIndexDOD property when selecting a row.

 Added doNotSort and initialSelection parameters to Reset method. Also changed behavior so that
a ScrollPosition of “-1” means that the initialSelection sets the scroll position. If there is no
initialSelection, “-1” is the same as “0”.

 Reduced memory requirements when internal sorting is not used from 13 bytes per row +
overhead to 1 byte per row + overhead. If internal sorting is used, memory usage remains at 13
bytes per row + overhead.

1.23 Added code to force an update of the number of visible rows during a resize. This corrects a
problem where pressing the zoom button would resize the ListBox, but not the number of
visible rows.

 Added code to check whether the user is clicking on a horizontal scrollbar rather than just white
space beneath the listed items. Clicking white space deselects all items which is a bad thing if
you are just trying to scroll.

 Changed behavior so that a click near the last visible row is the same as a click on the last visible
row.

 Changed behavior so that a click in the white space beneath the last visible row is handled by
REALbasic rather than internally.

 Added the recalcNumOfVisibleRows parameter to the RefreshData method.

1.22 Fixed order that Change event was called while selecting a single row. This bug would manifest
while using the up and down arrow keys.

1.21 Removed Super.DeleteAllRows from the Reset method to prevent flicker during updates from
a thread.

1.2 Added the UseBlankCellBkgdPaint property to fire the CellBackgroundPaint event even for
blank rows. [REALbasic 2005 or later; no effect in previous versions.]

 Added isBlankRow parameter to CellBackgroundPaint event.

Data-On-Demand ListBox

– 27 –

 Added ForwardRequestsOnly and UseBlankCellBkgdPaint properties to Data-On-Demand ListBox
Property list in IDE.

 Changed behavior of Selected property so that invalid indexes will not generate an error. For
example, “Selected(-1) = true” will have no effect and “Selected(-1)” will return “false.”

 When using the integer array variation of the Selected property to set the selection, including an
invalid index will have no effect and will not generate an error.

 Added CellHasFocus property.

 Changed all examples to reflect changes to CellBackgroundPaint event.

1.11 Made double-click detection more reliable.

 Shift-clicking a column heading will unsort the ListBox if Data-On-Demand ListBox is handling
the sorting.

 Corrected a bug in examples that could occasionally lead to a blank, non-responsive ListBox.

 Correct some typos in manual.

1.1: Added CoordinatesToColumn method.

 Changed behavior of CoordintatesToHeader method. If the click is in the white space to the
right of the last column, now returns the ColumnCount.

 Fixed bug that required EnableDrag to be “true” to enable proper events.

 When cell is being editing, now prevents scrolling and disables the scrollbar.

 Implemented drag selections when set to multiple selections and EnableDrag is “false.” Also
fixed other drag and selection behavior when EnableDrag is “false.”

 Made checkbox click behavior even closer to that of standard ListBox. Now, a click in the
checkbox does not change the selection, but a click in the label next to the checkbox will.

 Added SQLite example and made fixes and changes to other examples.

1.0: First release.

Data-On-Demand ListBox

– 28 –

Contact
The Data-On-Demand ListBox was created by Kem Tekinay of MacTechnologies Consulting. The latest
version is available at http://www.mactechnologies.com. All technical support is handled via e-mail at
dod@mactechnologies.com. Anyone who misspells “Kem” will hear about it.

Legal Stuff
The Data-On-Demand ListBox was created by Kem Tekinay of MacTechnologies Consulting. © 2013 by
MacTechnologies Consulting. All rights reserved. Unregistered copies may be used and evaluated in
the Xojo/Real Studio IDE and in debug compilations, but may not be used in final, standalone
applications. Copies are registered per individual developer and may be used by that developer,
royalty-free, i

n an unlimited number of applications, commercial or otherwise. Once obtained, licenses may not be
transferred to other individuals or organizations. MacTechnologies Consulting reserves the right to
revoke the license of anyone who ignores or violates these restrictions. See our web site at
http://www.mactechnologies.com/ for registration information. Site licenses are available.

The Data-On-Demand ListBox is distributed AS IS. There is no warranty of any kind as to its fitness for
any purpose. The risks associated with the use of this product are borne by the user in their entirety.

In other words, the Data-On-Demand ListBox, although it is in no way designed to do so, could be
capable of ruining your software, crashing your computer and erasing your hard drive. It might also
devalue your house, repaint your car bright yellow, make U2 skip your town during their next tour,
and convince your significant other to run off with a leprechaun who smells kind of funny, but dances
much better than you do. Kem Tekinay and MacTechnologies Consulting take no responsibility for
these or other consequences.

Don’t say I didn’t warn you…

REALbasic®, Real Studio®, and Xojo® are registered trademarks of Xojo, Inc. See their web site at
http://www.xojo.com for more details. Kem Tekinay and MacTechnologies Consulting are in no way
affiliated with Xojo. All questions regarding Xojo should be directed to Xojo, Inc.

